初中數(shù)學(xué)八年級下冊第12章二次根式12.2二次根式的乘除教案新版蘇科版.docx
12.2二次根式的乘除(1)教學(xué)目標(biāo):1.理解(a0,b0),(a0,b0),并利用它們進(jìn)行計算和化簡;2.經(jīng)歷二次根式乘法法則的探究過程,進(jìn)一步理解乘法法則;3.在具體的計算過程中討論交流,總結(jié)公式,體會“數(shù)學(xué)知識來源于實踐”的理念教學(xué)重點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì)教學(xué)難點(diǎn):二次根式的乘法法則與積的算術(shù)平方根的性質(zhì)的理解與運(yùn)用教學(xué)過程:一、情境創(chuàng)設(shè)同學(xué)們,上節(jié)課我們了解了二次根式的概念,掌握了二次根式的性質(zhì),并能運(yùn)用這些性質(zhì)進(jìn)行一些簡單的計算,那么對于二次根式更為復(fù)雜的運(yùn)算我們還能解決嗎?數(shù)學(xué)來源于生活,下面我們就一起走進(jìn)數(shù)學(xué)實驗室,看看生活中的數(shù)學(xué)給我們帶來了怎樣新的問題?二、數(shù)學(xué)實驗室(1)在圖中,小正方形的邊長為1,AB,BC,畫出矩形ABCD的面積是多少?(2)在圖中,小正方形的邊長為1畫出矩形EFGH,使EF,F(xiàn)G矩形EFGH的面積是多少?三、探索活動活動一:計算:(1) , ;(2) , ;(3) , 你有什么發(fā)現(xiàn)?請與同學(xué)交流活動二:驗證公式:(a0,b0)的正確性計算:(1); (2); (3)(a0)活動三:了解了二次根式的乘法公式,請同學(xué)們逆向思考,你又有什么新發(fā)現(xiàn)呢?例1、化簡:(1); (2)(a0); (3)(a0,b0)知識拓展,能力提高觀察:(a0,b0).思考:?例2、 計算:(1); (2)四、小結(jié)我們的收獲:一路走來,我們結(jié)識了很多新知識,你能談?wù)勛约旱氖斋@嗎?說一說讓大家一起來分享12.2二次根式的乘除(2)教學(xué)目標(biāo):1進(jìn)一步理解二次根式的乘法法則,能熟練地進(jìn)行二次根式的乘法運(yùn)算;2能熟練地進(jìn)行二次根式的化簡及變形;3在討論、交流、總結(jié)方法的過程中,讓學(xué)生學(xué)會尊重和理解他人的見解,敢于發(fā)表自己的觀點(diǎn)教學(xué)重點(diǎn):熟練地進(jìn)行二次根式的乘法運(yùn)算教學(xué)難點(diǎn):熟練地進(jìn)行二次根式的化簡及變形教學(xué)過程:一、情景創(chuàng)設(shè)同學(xué)們,上節(jié)課我們學(xué)習(xí)了二次根式的乘法,你能用式子表示出乘法運(yùn)算的法則嗎?運(yùn)用這個法則可以進(jìn)行乘法運(yùn)算,還可以對結(jié)果進(jìn)行化簡,請同學(xué)們完成知識回顧中的三小題 ; ; (x0,y0)問題1::如何對二次根式進(jìn)行化簡?問題2:本組題中化簡結(jié)果有何要求?二、探索活動:活動一:剛才的問題說明同學(xué)上節(jié)課的知識掌握的很好,復(fù)雜一點(diǎn)的化簡你能解決嗎?例1、化簡(1)(0,b0);(2)(0,b0); (3)(0,b0)問題:用剛才的方法嘗試解決以下問題化簡:(1)(x0,xy0);(2)(x0,y0)活動二:例2、計算:(1); (2);(3)(0,b0); (4)活動三例3、計算:(1)()(); (2)二次根式乘法法則推廣:(0,b0,c0)活動四:例4、如圖,在ABC中,B90,AB10cm,BC20cm,求AC三、課堂小結(jié)本節(jié)課我們繼續(xù)學(xué)習(xí)二次根式的乘法法則和二次根式的化簡,我們是如何進(jìn)行化簡的?你還有哪些困惑?12.2 二次根式的乘除(3)教學(xué)目標(biāo):1能運(yùn)用除法法則(a0,b0),進(jìn)行二次根式的除法運(yùn)算;2能逆用二次根式的除法運(yùn)算法則,對簡單的二次根式進(jìn)行化簡;3在解問題的過程中培養(yǎng)學(xué)生探究意識、合作意識教學(xué)重點(diǎn):二次根式的除法法則及商的算術(shù)平方根的性質(zhì)的應(yīng)用教學(xué)難點(diǎn):商的算術(shù)平方根的性質(zhì)的理解與運(yùn)用教學(xué)過程:一、情境創(chuàng)設(shè):(1) , ;(2) , ;(3) , ;(4) , 比較上述各式,你猜想到什么結(jié)論?二、探索活動活動一: 運(yùn)用二次根式的除法運(yùn)算法則進(jìn)行計算計算:(1) (2) (3) (4)學(xué)生練習(xí):(1) ;(2) ;(3) ;(4) 由(a0,b0),可以得到,(a0,b0)利用商的算術(shù)平方根的性質(zhì)可以化簡一些二次根式活動二:商的算術(shù)平方根的性質(zhì)進(jìn)行化簡化簡:(1); (2) ; (3); (4)(a0,b0)學(xué)生練習(xí):化簡:(1) ;(2) ;(3) ;(4)(y0) 活動三:二次根式的除法運(yùn)算法則的意義等式成立的條件是 練習(xí):等式成立的條件是 三、拓展提高1計算;2已知一個長方形的面積為,其中一邊長為,求長方形的對角線的長四、課堂小結(jié):你能總結(jié)一下,我們這節(jié)課學(xué)習(xí)的公式嗎?12.2 二次根式的乘除(4)教學(xué)目標(biāo):1使學(xué)生能運(yùn)用法則(a0,b0)化去被開方數(shù)的分母或分母中的根號;使學(xué)生能進(jìn)一步明確二次根式化簡結(jié)果中的被開方數(shù)應(yīng)不含有能開得盡方的因數(shù)或因式,也不含有分母根式運(yùn)算的結(jié)果中分母不含有根號2在解問題的過程中培養(yǎng)學(xué)生的探究意識、合作意識教學(xué)重點(diǎn):商的算術(shù)平方根的性質(zhì)及二次根式的除法法則的應(yīng)用教學(xué)難點(diǎn):商的算術(shù)平方根的性質(zhì)的理解與運(yùn)用教學(xué)過程:一、情境創(chuàng)設(shè):想一想:?(a_ _,b_ _),?(a_ _,b_ _)二、探索活動:活動一:問題1:如何化去的被開方數(shù)中的分母呢?問題2:如何化去的被開方數(shù)中的分母呢?問題3:如何化去(a0)的被開方數(shù)中的分母呢?對于更一般的情況:問題4:如何化去(a0,b0)的被開方數(shù)中的分母呢?由此你能得到一般的結(jié)論嗎?活動二:例1、化去根號內(nèi)的分母:(1) ;(2) ;(3)(x0,y0)練習(xí):化簡(1); (2); (3)(a0,b0)活動三:想一想:如果上面首先化成,那么該怎樣化去分母中的根號呢?對于該怎樣化去分母中的根號呢?, 當(dāng)一個式子的分母中有根號時,只要分子、分母都乘適當(dāng)?shù)臄?shù)或式,就可以使分母中不含有根號例如,當(dāng)a0,b0時,例2、化簡下列各式,使分母中不含根號(1); (2)(x0); (3)(x0,y0)練習(xí):計算(1);(2);(3)(a0,b0)三、小結(jié)與作業(yè): 一般地,二次根式運(yùn)算的結(jié)果中,被開方數(shù)中應(yīng)不含有分母,分母中應(yīng)不含有根號那么應(yīng)該怎樣進(jìn)行這兩類二次根式的化簡呢?最簡二次根式滿足什么形式