亚洲精品成人在线_国产欧美精品一区二区三区四区_狠狠干狠狠干香蕉视频_久久国产精品久久久久久,九九热欧美,天天干天天射天天操,日本精产品一二三产品区别

歡迎來到叮當云教育! | 幫助中心 教學備課就來叮當文庫!

叮當云教育

換一換
首頁 叮當云教育 > 資源分類 > DOCX文檔下載
 

滬科版初中數學概念及知識點整理.docx

  • 資源ID:33984       資源大小:192.47KB        全文頁數:27頁
  • 資源格式: DOCX        下載權限:游客/注冊會員/VIP會員    下載費用:30金幣 【人民幣3元】
快捷注冊下載 游客一鍵下載
會員登錄下載
三方登錄下載: 微信開放平臺登錄
下載資源需要30金幣 【人民幣3元】
郵箱/手機:
溫馨提示:
支付成功后,系統會自動生成賬號(用戶名和密碼都是您填寫的郵箱或者手機號),方便下次登錄下載和查詢訂單;
支付方式: 支付寶    微信支付   
驗證碼:   換一換

加入VIP,下載更多資源
 
友情提示
2、PDF文件下載后,可能會被瀏覽器默認打開,此種情況可以點擊瀏覽器菜單,保存網頁到桌面,既可以正常下載了。
3、本站不支持迅雷下載,請使用電腦自帶的IE瀏覽器,或者360瀏覽器、谷歌瀏覽器下載即可。
4、本站資源下載后的文檔和圖紙-無水印,預覽文檔經過壓縮,下載后原文更清晰   

滬科版初中數學概念及知識點整理.docx

七年級上一、有理數1. 正整數、0、負整數統稱為整數(0不是正數也不是負數);正分數、負分數統稱為分數;整數和分數統稱為有理數。凡是可以寫成 pq (p、q為整數且q0)形式的數,都是有理數。2. 規定了原點、正方向和單位長度的直線叫做數軸(任意一個有理數都可以用數軸上的一點來表示)。3. 只有符號不同的兩個數互為相反數(0的相反數為0)。a、b互為相反數a+b=0(相反數的和為0)4. 在數軸上,表示數a的點到原點的距離,叫做數a的絕對值,記做|a|。正數的絕對值是它本身;負數的絕對值是它的相反數;0的絕對值是0。5.有理數大小比較(1)正數大于0,0大于負數,正數大于負數;(2)數軸上的兩個數,右邊的數總比左邊的數大;(3)正數的絕對值越大,這個數越大;(4)負數的絕對值越大,這個數越小。6有理數的加減運算加法法則(1)同號兩數相加,取相同的符號,并把絕對值相加;(2)異號兩數相加,取絕對值較大的符號,并用較大的絕對值減去較小的絕對值;(3)一個數與0相加仍得這個數。減法法則:減去一個數等于加上這個數的相反數。加法交換律:a+b=b+a;加法結合律:(a+b)+c=a+(b+c)7. 乘積為1的兩個數互為倒數(0沒有倒數)。a、b互為倒數ab=1(倒數的積為1)8. 有理數的乘除運算乘法法則(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數與0相乘仍得0;(3)幾個數相乘,符號由負號個數決定。除法法則(除以一個不為0的數,等于乘以這個數的倒數)(1)兩數相除,同號得正,異號得負,并把絕對值相除;(2)0除以一個不為0的數仍得0(0不能做除數);(3)幾個數相除,符號由負號個數決定。乘法交換律:ab=ba;乘法結合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac。9. 求n個相同因數的積的運算叫做乘方;乘方的結果叫過冪;相同因數叫做底數;相同因數的個數叫做指數。10. 乘方運算法則(1)正數的任何次冪都是正數;(2)負數的奇次冪是負數,偶次冪是正數。混合運算法則:先乘方,再乘除,后加減;如果有括號,先進行括號里的運算。11. 一般地,一個絕對值大于10的數都可以記成a10n的形式,其中1a10,n等于原數的整位數減1。這種記數方法叫做科學記數法。12. 一個與實際數值很接近的數稱為近似數。一個數的近似值與它準確值的差,叫做誤差(誤差的絕對值越小,近似值就越接近準確值,即近似程度越高)。近似數一般由四舍五入法取得,四舍五入到某一位,就說這個近似數精確到那一位。從左邊第一個不為0的數字起,到精確的位數止,所有數字叫做這個近似數的有效數字。二、整式加減1. 能被2整除的為偶數,反之為奇數。2. 用加減乘除及乘方等運算符把數或表示數的字母連接而成的式子,叫做代數式;用數值代替代數式里的字母,按照代數式中的運算關系計算得出的結果叫做代數式的值。3. 由數和字母的積組成的式子叫做單項式,其中數字為系數,字母指數的和叫做次數。4. 幾個單項式的和叫做多項式,每個單項式叫做多項式的項,不含字母的叫常數項,多項式中次數最高的項的次數叫做多項式的次數。5. 單項式和多項式統稱為整式。所含字母相同,且相同字母的指數也相同的項叫做同類項(常數項與常數項是同類項)。把多項式中的同類項合并成一項,叫做合并同類項。6. 去括號(1)括號外為正,去括號后,括號內各項都不改變符號;(2)括號外為負,去括號后,括號內各項都改變符號。7. 運算結果常將多項式按某個字母的指數從大到小(或從小到大)依次排列,這種排列叫做關于這個字母的降冪(升冪)排列。三、一次方程與方程組1. 只含有一個未知數(元),未知數的次數是1,且等式兩邊都是整式的方程叫做一元一次方程。2. 等式的性質(1)等式兩邊同時加上(或減去)同一個數或同一等式,所得結果仍是等式(若a=b則a+c=b+c,a-c=b-c);(2)等式兩邊同時乘以(或除以)同一個數(除數不能為0),所得結果仍是等式(若a=b則ac=bc,ac=bc(c0);(3)若a=b則b=a(對稱性);(4)若a=b,b=c則a=c(傳遞性);(5)若a-b=c-d則a+d=c+b(移項:把等式一邊的某項變換符號后移動到另一邊)。3. 解一元一次方程:整理等式,去分母,去括號,移項,合并同類項,系數化1。4. 含有兩個未知數的一次方程稱為二元一次方程(ax+by=c(a0,b0)。聯立在一起的幾個方程稱為方程組。5. 由兩個一次方程組成的含有兩個未知數的方程組叫二元一次方程組。使二元一次方程組中每個方程都成立的兩個未知數的值叫做二元一次方程組的解。6. 將未知數的個數由多化少,逐一解決的想法叫做消元思想。7. 求二元一次方程組的解(1)將一個未知數用含有另一個未知數的式子表達出來,再帶入另一個方程,實現消元,進行求解,這種方法叫代入消元法;(2)當兩個方程中同一未知數的系數相反或相等時,將兩個方程兩邊分別相加或相減以消去這個未知數的方法叫做加減消元法。四、幾何圖形1. 兩點之間的所有連線中,線段最短。兩點之間線段的長度叫這兩點間的距離。將線段向一個方向無限延長就得到射線;將線段向兩方向無限延長就得到直線(經過兩點有且僅有一條直線。兩條直線相交只有一個交點)。2. 角可以看作是從一點出發的兩條射線所組成的圖形,其中該點叫做角的頂點,兩條射線叫做角的邊。3. 在角的內部,以角的頂點為端點的一條射線把這個角分成兩個相等的角,這條射線叫做這個角的平分線。4. 兩個角的和等于一個平角,這兩個角互為補角,簡稱互補。兩個角的和等于一個直角,這兩個角互為余角,簡稱互余。同角的補角相等(余角相等)。五、數據的收集與整理1. 全面調查:收集全部數據進行分析。2. 抽樣調查:選取全部數據中的部分數據進行分析。3. 考察對象的全體叫做總體,其中的每一個考察對象叫做個體,從總體中所抽取的一部分個體叫做總體的一個樣本,樣本中個體的數目叫做樣本容量。4. 組數與組距:在統計數據時,將數據按照一定的范圍分成若干各組,分成組的個數稱為組數,每一組兩個端點的差叫做組距。七年級下六、實數1. 一般地,如果一個數的平方等于a,那么這個數叫做a的平方根,也叫做二次方根(正數的平方根有兩個,它們互為相反數;0的平方根為0;負數沒有平方根),其中a叫做被開方數,a表示a的正平方根,也叫做算數平方根,另一個根為a。求一個數的平方根的運算叫做開平方。2. 一般地,如果一個數的立方等于a,那么這個數叫做a的立方根,也叫做三次方根,記做3a(正數的立方根是正數;0的立方根為0;負數的立方根是負數),其中a叫做被開方數,3叫做根指數。求一個數的立方根的運算叫做開立方。3. 無限不循環小數叫做無理數。有理數與無理數統稱為實數。4. 實數大小比較(1)正數大于0,0大于負數,正數大于負數;(2)數軸上的兩個數,右邊的數總比左邊的數大;(3)正數的絕對值越大,這個數越大;(4)負數的絕對值越大,這個數越小。七、一元一次不等式與不等式組1.用不等號(、或)表示不等關系的式子叫做不等式。一般地,能夠使不等式成立的未知數的值,叫做這個不等式的解,所有的這些解叫做不等式的解集,求不等式解集的過程叫做解不等式。2. 含有一個未知數,未知數的次數是1,且不等號兩邊都是整式的不等式叫做一元一次不等式;由幾個含有同一個未知數的一元一次不等式組成的不等式組叫做一元一次不等式組,這幾個一元一次不等式解集的公共部分叫做這個一元一次不等式組的解集,求一元一次不等式組解集的過程叫做解不等式組。3. 不等式的性質(1)不等式的兩邊同時加上(或減去)同一個數或同一個整式,不等號的方向不變(若ab則a+cb+c,a-cb-c);(2)不等式的兩邊同時乘以(或除以)同一個正數,不等號的方向不變(若ab,c0則acbc,acbc);(3)不等式的兩邊同時乘以(或除以)同一個負數,不等號的方向改變(若ab,c0則acbc,acbc);(4)若ab則ba;(5)若ab,bc則ac。八、整式乘法與因式分解1. 冪的運算(1)同底數冪相乘,底數不變,指數相加(aman=amn(m,n都是正數);(2)冪的乘方,底數不變,指數相乘(am)n=amn(m,n都是正數);(3)積的乘方等于各因式乘方的積(ab)n=anbn(n是正數);(4)同底數冪相除,底數不變,指數相減(aman=amn(a0,m,n都是正數,且mn)。任何一個不等于零的數的零次冪都等于1。任何一個不等于零的數的p(p是正數)次冪等于這個數的p次冪的倒數。2. 整式乘法(1)單項式相乘,把系數、同底數冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數作為積的一個因式;(2)單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加;(3)多項式與多項式相乘,先把一個多項式的每一項和另一個多項式的每一項相乘,再把所得的積相加。3. 整式除法(1)單項式相除,把系數、同底次冪分別相除,作為商的因式;對于只在被除式里含有的字母,則連同它的指數作為商的一個因式;(2)多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加。4. 完全平方公式:(ab)2=a22ab+b2;平方差公式:(ab)(ab)=a2b25. 把一個多項式化為幾個整式的積的形式叫做因式分解,也叫做把這個多項式分解因式。(提公因式法、公式法)6. 因式分解步驟(1)先看各項是否有公因式,若有,則先提取公因式;(2)看是否可以使用公式法;(3)分組分解法,通過分組后提取公因式或運用公式法;(4)因式分解的最終結果必須是幾個整式的乘積,且不能再分解。九、分式1. 一般地,如果a,b表示兩個整式,并且b中含有字母(b0),那么式子ab叫做分式,其中a叫做分式的分子,b叫做分式的分母。整式與分式統稱為有理式。2. 把一個分式的分子與分母的公因式約去叫做分式的約分,分子與分母只有公因式1的分式,叫做最簡分式(約分時,一般將分式化為最簡分式)。3. 異分母分式化為同分母分式的過程叫通分,通常取各分母所有因式的最高次冪的積作為公分母,這樣的公分母叫做最簡公分母(若各分母的系數都是整數時,通常取它們系數的最小公倍數作為最簡公分母的系數;當分母是多項式時,一般先分解因式)。4. 分式的運算法則(1)同分母的分式相加減,分母不變,分子相加減;(2)異分母的分式相加減,先通分,變為同分母的分式后再加減;(3)兩個分式相乘,用分子的積作積的分子,分母的積作積的分母;(4)兩個分式相除,將除式的分子、分母顛倒位置后,與被除式相乘;(5)分式乘方就是把分子、分母分別乘方。混合運算法則:先乘方,再乘除,后加減;如果有括號,先進行括號里的運算。5. 分母中含有未知數的方程叫做分式方程。分式方程的解法(1)去分母(方程兩邊同時乘以最簡公分母,將分式方程化為整式方程);(2)按解整式方程的步驟求出未知數的值;(3)驗跟(分式方程化為整式方程的過程中,擴大了未知數的取值范圍,可能會產生增根,所以必須驗跟)。十、相交線、平行線與平移1. 一個角的兩邊分別是另一個角的兩邊的反向延長線,這樣的兩個角互為對頂角(對頂角相等)。2. 兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角(兩個角有一條公共邊,它們的另一條邊互為反向延長線,具有這種關系的兩個角,叫做鄰補角)。互為鄰補角的兩個角一定互為補角,互為補角的兩個角不一定互為鄰補角。互為鄰補角的兩個角一定互為鄰角,互為鄰角的兩個角不一定互為鄰補角。3. 兩條直線相交成直角時,叫做互相垂直,其中一條叫另一條的垂線(過一點有且只有一條直線垂直于已知直線),它們的交點叫做垂足。在連接直線外一點與直線上各點的線段中,垂線段(該點與垂足形成的線段)最短,垂線段的長度叫點到直線的距離。4. 同一平面內不相交的兩條直線叫做平行線。經過直線外一點,有且只有一條直線平行于這條直線;如果兩條直線和第三條直線平行,那么這兩條直線平行。5. 如圖,具有1與5這種位置關系的一對角叫做同位角;具有3與5這種位置關系的一對角叫做內錯角;具有4與5這種位置關系的一對角叫做同旁內角。6. 平行線判定定理(1)同位角相等,兩直線平行;(2)內錯角相等,兩直線平行;(3)同旁內角互補,兩直線平行。7. 平行線性質:(1)兩直線平行,同位角相等;(2)兩直線平行,內錯角相等;(3)兩直線平行,同旁內角互補。8. 在平面內,一個圖形沿某個方向移動一定的距離,這種圖形的變換叫做平移。平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。一個圖形和它經過平移后所得的圖形中,連接各組對應點的線段互相平行(或在同一條直線上)且相等。平移只改變圖形的位置,不改變圖形的形狀和大小。八年級上十一、平面直角坐標系1. 有順序的兩個數a與b組成的數對叫做有序數對,記做(a,b)。2. 在平面內,兩條互相垂直且有公共原點的數軸組成平面直角坐標系,水平的數軸叫做x軸或橫軸(取向右為正方向),豎直的軸叫做y軸或縱軸(取向上為正方向),兩坐標軸的交點為平面直角坐標系的原點。兩條坐標軸把平面分為四個部分,右上叫做第一象限(符號,),剩余三個按逆時針方向依次稱為第二象限(符號,),第三象限(符號,),第四象限(符號,)(坐標軸上的點(即x,y軸上的點)不屬于任何一個象限)。3. 平面上的任一點p,過p分別向x,y軸作垂線,垂足分別在x,y軸上,對應的數a,b分別叫做點p的橫坐標與縱坐標,記做p(a,b)(平面內任意一點p都有唯一的有序實數對(x,y)與之對應,反之,對于任意一個有序實數對(x,y),在平面直角坐標系內都有唯一的點p與之對應)。4. 平面直角坐標系中的圖形平移,圖形上任意一點(x,y)的變化:向右移動a(a0)個單位(x+a,y),向左移動a(a0)個單位(x-a,y),向上移動b(b0)個單位(x,y+b),向下移動b(b0)個單位(x,y-b)。十二、一次函數1. 數值不斷變化的量為變量,數值始終不變的量為常量。2. 一般地,設在一個變化過程中的兩個變量x,y,如果對于x在它允許的取值范圍內的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數(表達函數關系主要有列表法、解析法(表達式)與圖像法),當x=a時,y=b,那么b叫做當自變量x的值為a時的函數值。3. 形如y=kx+b(k,b為常數,且k0)的函數叫做一次函數(x是自變量,y是因變量)。當b=0時,稱y是x的正比例函數,其一般式為y=kx(k0),其圖像是經過原點的一條直線。4. 一次函數的性質(1)當k0時,y隨x的增大而增大;(2)當k0時,y隨x的增大而減小。5. 一次函數的圖像當k0時(1)k0,b0,直線圖像位于一二三象限;(2)k0,b0,直線圖像位于一三象限;(3)k0,b0,直線圖像位于一三四象限;當k0時(1)k0,b0,直線圖像位于一二四象限;(2)k0,b0,直線圖像位于二四象限;(3)k0,b0,直線圖像位于二三四象限。6. 直線y=kx+b與y軸相交于點(0,b),b叫做直線y=kx+b在y軸上的截距。7. 直線y=kx+b相當于y=kx平移b個單位長度(b0向上平移,b0向下平移)。8. 先設所求一次函數表達式為y=kx+b(k,b是待確定的系數),根據已知條件列出關于k,b的方程組,求k,b的值。這種確定表達式中系數的方法叫做待定系數法。9. 自變量在不同取值范圍內表示函數關系式的表達式有不同的形式,這樣的函數稱為分段函數。十三、三角形中的邊角關系、命題與證明1. 由不在同一條直線上的三條線段首尾相接所組成的封閉圖形叫做三角形。如下圖所示,點A,B,C叫做這個三角形的頂點;線段AB,AC,BC叫做這個三角形的邊;A,B,C叫做這個三角形的內角。我們將這個三角形記作“ABC”,讀作“三角形ABC”2. 三條邊互不相等的三角形叫做不等邊三角形;兩條邊相等的三角形叫做等腰三角形(等腰三角形中,相等的兩邊叫腰,第三邊叫底邊;兩條腰的夾角叫做頂角,腰于底邊的夾角叫做底角);三條邊相等的三角形叫做等邊三角形(等邊三角形是等腰三角形的特例)。3. 三個角都是銳角的三角形叫做銳角三角形;有一個角是直角的三角形叫做直角三角形(夾直角的兩邊叫做直角邊,直角相對的邊叫做斜邊,直角三角形ABC可寫成RtABC);有一個角是鈍角的三角形叫做鈍角三角形。4. 三角形中,一個角的平分線與這個角的對邊相交,頂點與交點之間的線段叫做三角形的角平分線;連接一個頂點與它對邊中點的線段叫做三角形的中線(三角形三條中線相交于一點,這個交點叫做三角形的重心);從三角形一個頂點到它對邊所在直線的垂線段叫做三角形的高線,也叫三角形的高。5. 三角形的一條邊與另一條邊的反向延長線組成的角,叫做三角形的外角。6. (1)三角形中任何兩邊的和大于第三邊;(2)三角形中任何兩邊的差小于第三邊;(3)三角形的內角和為180;(4)直角三角形的兩銳角互余(兩銳角互余的三角形是直角三角形);(5)三角形的外角與其相鄰內角互補,大于與它不相鄰的任何一個內角,等于不相鄰兩內角的和。7. 對某一事件做出正確或不正確判斷的語句叫做命題;正確的命題叫做真命題,錯誤的命題叫做假命題。命題常寫成“如果那么”的形式,“如果p,那么q”,或者說成“若p,則q”,其中p叫做這個命題的條件(或題設),q是這個命題的結論(或題斷)。將命題“如果p,那么q”中的條件與結論互換得到新命題“如果q,那么p”,這樣的兩個命題叫做互逆命題,其中一個叫原命題,另一個叫做原命題的逆命題。符合命題條件,但不符合命題結論的例子,我們稱之為反例(要說明一個命題是假命題只需舉出一個反例即可)。有些命題是由基本事實或其他真命題出發用推理方法判斷為正確的,并被選作判斷命題真假的依據,這樣的真命題叫做定理。從已知條件出發,依據定義、基本事實、已證定理,并按照邏輯規則推導出結論的方法稱為演繹推理,演繹推理的過程,就是演繹證明,簡稱證明。8. 因為需要而在原圖形上添畫的線叫做輔助線,輔助線通常畫為虛線。十四、全等三角形1. 能夠完全重合的兩個圖形,叫做全等形。兩個三角形的形狀、大小都一樣時,其中一個可以通過平移、旋轉、對稱等運動使之與另一個重合,這兩個三角形稱為全等三角形。全等三角形中互相重合的邊叫做對應邊,互相重合的角叫做對應角,互相重合的頂點叫做對應頂點。2. 全等三角形的性質(1)對應邊相等;(2)對應角相等。3. 記兩個三角形全等時,通常把表示對應頂點的字母寫在對應的位置上,如ABC和DEF全等,記作ABCDEF,讀作“ABC全等于DEF”。4. 全等三角形的判定(1)兩邊及其夾角分別相等的兩個三角形全等(簡記為“邊角邊”或“SAS”(S表示邊,A表示角);(2)兩角及其夾邊分別相等的兩個三角形全等(簡記為“角邊角”或“ASA”);(3)三邊分別相等的兩個三角形全等(簡記為“邊邊邊”或“SSS”);(4)兩角分別相等且其中一組等角的對邊相等的兩個三角形全等(簡記為“角角邊”或“AAS”);(5)斜邊與一條直角邊分別相等的兩個直角三角形全等(簡記為“斜邊、直角邊”或“HL”)。十五、軸對稱圖形與等腰三角形1. 如果一個平面圖形沿著一條直線折疊,直線兩旁的部分能夠完全重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸,折疊后重合的兩點叫做對應點。2. 經過線段的中點并且垂直于這條線段的直線叫做這條線段的垂直平分線,又叫做線段的中垂線。垂直平分線性質(1)線段垂直平分線上的點到線段兩端的距離相等;(2)到線段兩端距離相等的點在線段的垂直平分線上。3. 一般地,如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線;反之,成軸對稱的兩個圖形中,對應點的連線被對稱軸垂直平分。4. 等腰三角形性質(1)等腰三角形的兩底角相等(簡稱“等邊對等角”);(2)等腰三角形頂角的平分線垂直平分底邊(等腰三角形頂角的角平分線、底邊上的高、底邊上的中線互相重合,簡稱“三線合一”)。5. 等腰三角形判定:有兩個角相等的三角形是等腰三角形(簡稱“等角對等邊”)。6. 等邊三角形性質(1)等邊三角形三個內角相等,每一個內角都等于60;(2)等邊三角形任何一內角的角平分線于該內角的對應邊上的高和中線互相重合。7. 等邊三角形判定(1)三個角都相等的三角形是等邊三角形;(2)有一個角是60的等腰三角形是等邊三角形;(3)有兩個角是60的三角形是等邊三角形;(4)三條邊都相等的三角形是等邊三角形(定義)。8. 直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。直角三角形斜邊上的中線等于斜邊的一半。9. 角平分線性質(1)角平分線上的點到角的兩邊的距離相等;(2)角的內部到角的兩邊的距離相等的點在該角的角平分線上。八年級下十六、二次根式1. 二次根式的性質(1)(a)2=a(a0)(2)a2=a=a(a0);a2=a=-a(a0)2. 二次根式的乘除運算(1)二次根式的乘法:如果a0,b0,那么有ab=ab(可寫成ab=ab(a0,b0)(2)二次根式的除法:如果a0,b0,那么有ab=ab(可寫成ab=ab(a0,b0)3. 滿足下列兩個條件的二次根式稱為最簡二次根式(1)被開方數的因數是正數,因式是整式;(2)被開方數中不含能開得盡方的因數或因式。有時需將被開方數分解因式;當一個式子的分母中含有二次根式時,一般應把分母有理化。4. 二次根式的加減運算,先將各個二次根式化成最簡,再把同類二次根式合并。十七、一元二次方程1. 只含有一個未知數,并且未知數的最高次數是2的整式方程,叫做一元二次方程,一般形式(標準形式):ax2+bx+c=0(a0),其中ax2叫做二次項,a叫做二次項的系數;bx叫做一次項,b是一次項的系數;c叫做常數項。2. 解一元二次方程(1)配方法:對原一元二次方程配方,使它出現完全平方公式后,再開平方求解;(2)因式分解法:通過因式分解,將一個一元二次方程轉化為兩個一元一次方程來求解;(3)公式法:一元二次方程ax2+bx+c=0(a0且b2-4ac0)X-bb2-4ac2a(b2-4ac0)3. 一元二次方程ax2+bx+c=0(a0)根的情況由b2-4ac來確定。我們把b2-4ac叫做一元二次方程ax2+bx+c=0(a0)根的判別式,通常用符號表示,即=b2-4ac。(1)當0時,有兩個不相等的實數根X1-b+b2-4ac2a, X2-b-b2-4ac2a(2)當=0時,有兩個相等的實數根X1=X2=b2a(3)當0時,沒有實數根4. 韋達定理:如果ax2+bx+c=0(a0)的兩個根為X1,X2,那么X1+X2=ba,X1X2=ca。十八、勾股定理1. 勾股定理:直角三角形兩條直角邊的平方和等于斜邊的平方。如果直角三角形的兩條直角邊用a,b表示,斜邊用c表示,則勾股定理可表示為a2+b2=c2。2. 勾股定理逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。3. 能夠成為直角三角形三條邊長度的三個正整數,稱為勾股數。十九、四邊形1. 在平面內,由若干條不在同一條直線上的線段首尾順次相接組成的封閉圖形叫做多邊形,組成多邊形的線段叫做多邊形的邊,相鄰兩邊的公共端點叫做多邊形的頂點,相鄰兩邊組成的角叫做多邊形的內角,頂點處一邊與另一邊的延長線所組成的角叫做多邊形的外角,多邊形中連接不相鄰兩個頂點的線段叫做多邊形的對角線。2. n邊形的內角和等于(n-2)180;n邊形的外角和等于360(n為不小于3的整數)。3. 兩組對邊分別平行的四邊形叫做平行四邊形。4. 兩條平行線中,一條直線上任意一點到另一條直線的距離叫做這兩條平行線之間的距離。5. 平行四邊形的性質(1)平行四邊形的對邊相等;(2)平行四邊形的對角相等;(3)平行四邊形的對角線互相平分。6. 平行四邊形的判定(1)一組對邊平行且相等的四邊形是平行四邊形;(2)兩組對邊分別相等的四邊形是平行四邊形;(3)對角線互相平分的四邊形是平行四邊形;(4)兩組對角分別相等的四邊形是平行四邊形;(5)兩組對邊分別平行的四邊形是平行四邊形(定義)。7. 連接三角形兩邊中點的線段叫做三角形的中位線。三角形中位線定理:三角形兩邊中點連線平行于第三邊,并且等于第三邊的一半。三角形的三條中線相交于一點(重心),這點和各邊中點的距離等于相應各邊上中線的三分之一。8. 有一個角是直角的平行四邊形叫做矩形。9. 矩形的性質(1)矩形的四個角都是直角;(2)矩形的對角線相等且互相平分(推論:直角三角形斜邊上的中線等于斜邊的一半)。10. 矩形的判定(1)對角線相等的平行四邊形是矩形;(2)三個角是直角的四邊形是矩形;(3)有一個角是直角的平行四邊形叫做矩形(定義);(4)對角線相等且互相平分的四邊形是矩形。11. 有一組鄰邊相等的平行四邊形叫做菱形。12. 菱形的性質(1)菱形的四條邊都相等;(2)菱形的對角線互相垂直;(3)菱形的每一條對角線平分一組對角。13. 菱形的判定(1)四邊都相等的四邊形是菱形;(2)對角線互相垂直的平行四邊形是菱形;(3)一組鄰邊相等的平行四邊形是菱形(定義);(4)一條對角線平分一組對角的平行四邊形是菱形。14. 有一個角是直角,且有一組鄰邊相等的平行四邊形叫做正方形。15. 正方形的性質(1)正方形的四條邊都相等,四個角都是直角;(2)正方形的對角線相等且互相垂直平分;(3)正方形既是矩形,又是菱形。16. 正方形的判定(1)鄰邊相等的矩形是正方形;(2)有一個角是直角的菱形是正方形;(3)對角線互相垂直的矩形是正方形;(4)鄰邊相等且有一個角是直角的平行四邊形是正方形(定義);(5)對角線相等的菱形是正方形。17. 只有一組對邊平行,另一組對邊不平行的四邊形叫做梯形,有一個角是直角的梯形叫做直角梯形,兩腰相等的梯形叫做等腰梯形。18. 等腰梯形的性質(1)等腰梯形的兩腰相等;(2)等腰梯形的對角線相等;(3)等腰梯形同一底邊上的兩個角相等。19. 等腰梯形的判定:同一底上兩個角相等的梯形是等腰梯形。二十、數據的初步分析1. 我們把一批數據中落在某個小組內數據的個數稱為這個組的頻數。某一組數據的頻數與這批數據的個數的比值叫做這組數據的頻率。2. 畫出相互垂直的兩條直線,用橫軸表示分組情況,縱軸表示頻數,繪出相應的長方形條,就得到了頻數直方圖。3. n個數的和除以n所得的值叫做這組數據的平均數。一組數據中,各數據出現的次數叫做該數據的權(反應了該數據在這組數據中的比重/重要程度)。各數據乘權后累加所得的和除以權值和所得到的值叫做加權平均數。4. 將一組數據按大小順序排列后,位于正中間的一個數據(當數據的個數是奇數時)或正中間兩個數據的平均數(當數據的個數是偶數時)叫做這組數據的中位數。一組數據中出現次數最多的數據叫做這組數據的眾數。5. 一組數據中最大數據與最小數據的差叫做這組數據的極差。6. n個數據中,各個數據與平均數差的平方的和除以n所得到的值叫做這組數據的方差。一組數據方差越大,說明這組數據的離散程度越大。方差越大,數據的波動越大,方差越小,數據的波動越小,越穩定。方差的平方根稱為標準差。九年級上二十一、二次函數與反比例函數1. 一般地,表達式形如y=ax2+bx+c(a,b,c是常數,且a0)的函數叫做x的二次函數,其中x是自變量。2. 二次函數的解析式的三種形式(1)一般式:y=ax2+bx+c(a0)(2)頂點式:y=a(x+b2a)2+4ac-b24a(a0)或y=a(x-h)2+k(a0)(3)交點式:y=a(x-x1)(x-x2)(a0)3. 二次函數的圖像與性質函數y=ax2+bx+c(a,b,c是常數,且a0)圖像a0a0性質拋物線向上開口,并向上無線延伸拋物線向下開口,并向下無線延伸對稱軸x=b2a,頂點(b2a,4ac-b24a)對稱軸x=b2a,頂點(b2a,4ac-b24a)當xb2a時,y隨x的增大而增大;當xb2a時,y隨x的增大而減小當xb2a時,y隨x的增大而減小;當xb2a時,y隨x的增大而增大拋物線有最低點,當x=b2a時,y最小值=4ac-b24a拋物線有最高點,當x=b2a時,y最大值=4ac-b24a4. 二次函數的平移上加下減,左加右減5. 待定系數法求二次函數解析式根據已知條件確定二次函數解析式通常利用待定系數法。用待定系數法求二次函數的解析式,必須依據題目特點選擇適當的形式。(1)已知拋物線上三點的坐標,一般設解析式為y=ax2+bx+c(a0);(2)已知拋物線頂點或對稱軸或最大(小)值,一般設解析式為y=a(x-h)2+k(a0);(3)已知拋物線與X軸的兩個交點,一般設解析式為y=a(x-x1)(x-x2)(a0)6. 二次函數與一元二次方程拋物線y=ax2+bx+c與x軸的交點的橫坐標X1,X2是一元二次方程ax2+bx+c=0(a0)的根。當y=0時,拋物線y=ax2+bx+c便轉化為一元二次方程ax2+bx+c=0(a0)。(1)當b2-4ac0時,一元二次方程有兩個不相等的實根,二次函數圖像與x軸有兩個交點;(2)當b2-4ac0時,一元二次方程有兩個相等的實根,二次函數圖像與x軸有一個交點;(3)當b2-4ac0時,一元二次方程有沒有實根,二次函數圖像與x軸沒有交點。7. 一般地,表達式形如y=kx(k為常數且k0)的函數叫做反比例函數;反比例函數的圖像是雙曲線;反比例函數圖像既是軸對稱圖形又是中心對稱圖形(兩條對稱軸y=x,y=-x,對稱中心為原點)。8. 反比例函數性質(1)當k0時,函數圖像位于第一、三象限,在每個象限內y值隨x值的增大而減小;(2)當k0時,函數圖像位于第二、四象限,在每個象限內y值隨x值的增大而增大。二十二、相似性1. 在四條線段a,b,c,d中,如果其中兩條線段a,b的比,等于另外兩條線段c,d的比,即abcd(或a:b=c:d),那么這四條線段叫做成比例線段,簡稱比例線段。這時,線段a,b,c,d叫做組成比例的項,線段a,d叫做比例外項,線段b,c叫做比例內項。若abbc,即b2=ac,那么線段b叫做線段a,c的比例中項。2. 基本性質(1)如果abcd,那么ad=bc(b,d0);反之也成立,即如果ad=bc,那么abcd;(2)合比性質:如果abcd,那么a+bbc+dd(b,d0);(3)等比性質:如果a1b1a2b2anbn,且b1+b2+bn0,那么a1+a2+anb1+b2+bna1b1。3. 把一條線段分成兩部分,使其中較長線段為全線段與較短線段的比例中項,這樣的線段分割叫做黃金分割,分割點叫做這條線段的黃金分割點,比值5-12叫做黃金數(即線段AB上找一點P,AP2=ABBP)。4. 兩條直線被平行線段所截,所得的對應線段成比例;平行于三角形一邊的直線截其他兩邊(或兩邊的延長線),所得的對應線段成比例。5. 一般地,兩個邊數相同的多邊形,如果它們的對應角相等,對應邊長度的比相等,那么這兩個多邊形叫做相似多邊形。相似多邊形對應邊長度的比叫做相似比或相似系數。6. 相似三角形的判定(1)平行于三角形一邊的直線與其他兩邊(或兩邊的延長線)相交,截得的三角形與原三角形相似;(2)如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似(兩角分別相等的兩個三角形相似);(3)如果一個三角形的兩條邊與另一個三角形的兩條邊對應成比例,并且夾角相等,那么這兩個三角形相似(兩邊成比例且夾角相等的兩個三角形相似);(4) 如果一個三角形的三條邊與另一個三角形的三條邊對應成比例,那么這兩個三角形相似(三邊成比例的兩個三角形相似);(5) 如果一個直角三角形的斜邊和一條直角邊與另一個直角三角形的斜邊和一條直角邊對應成比例,那么這兩個直角三角形相似。7. 相似三角形的性質(1) 相似三角形對應高的比、對應中線的比和對應角平分線的比都等于相似比;(2)相似三角形周長的比等于相似比;(3)相似三角形面積的比等于相似比的平方;(4)相似三角形對應角相等,對應邊成比例。8. 圖形的位似變換一般地,如果一個圖形上的點A1,B1,P1和另一個圖形上的點A,B,P分別對應,并且滿足下面兩點:(1)直線AA1,BB1,PP1都經過同一點O;(2)OA1OAOB1OBOP1OPk,那么這兩個圖形叫做位似圖形,點O叫做位似中心。二十三、解直角三角形1. 如下圖所示,在RtABC中,銳角A的對邊與鄰邊的比叫做A的正切,記做tanA,即tanAab;銳角A的對邊與斜邊的比叫做A的正弦,記做sinA,即sinAac;銳角A的鄰邊與斜邊的比叫做A的余弦,記做cosA,即cosAbc,銳角A的正弦、余弦、正切都叫做銳角A的三角函數。2. 坡面的鉛直高度h和水平長度L的比叫做坡面的坡度(或坡比),記作i,即ihL,坡面與水平面的夾角叫做坡角,記作,于是有tanhLi。顯然,坡度越大,坡角越大,坡面越抖。3. 特殊角的三角函數值304560sin122232cos322212tan33134. 任意一個銳角的正(余)弦值,等于它的余角的余(正)弦值。5. 在直角三角形中,除直角外,由已知元素求出未知元素的過程,叫做解直角三角形。九年級下二十五、圓1. 一個圖形繞著一個定點,旋轉一定的角度,得到另一個圖形的變換,叫做旋轉,定點叫旋轉中心,這個角度叫旋轉角,旋轉前后圖形上對應的兩點叫對應點。一個圖形和它經過旋轉所得到的圖形中,對應點到旋轉中心的

注意事項

本文(滬科版初中數學概念及知識點整理.docx)為本站會員(葉紅魚)主動上傳,叮當云教育僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對上載內容本身不做任何修改或編輯。 若此文所含內容侵犯了您的版權或隱私,請立即通知叮當云教育(點擊聯系客服),我們立即給予刪除!

溫馨提示:如果因為網速或其他原因下載失敗請重新下載,重復下載不扣分。




經營許可證編號:魯ICP備09030270號-2   魯公網安備 37011602000151號 copyright@ 2019-2022

網站大部分作品源于會員上傳,除本網站整理編輯的作品外,版權歸上傳者所有,如您發現上傳作品侵犯了您的版權,請立刻聯系我們并提供證據,我們將在3個工作日內予以改正。

1
收起
展開
主站蜘蛛池模板: 望都县| 定边县| 恩平市| 新建县| 咸阳市| 喜德县| 益阳市| 依安县| 革吉县| 南宫市| 合阳县| 奈曼旗| 衡阳县| 平山县| 西乡县| 武定县| 化州市| 汾阳市| 嘉善县| 伊金霍洛旗| 永吉县| 增城市| 锡林浩特市| 武夷山市| 沾化县| 二手房| 富民县| 太保市| 凤城市| 阜平县| 黔江区| 安丘市| 津市市| 阜康市| 蓬莱市| 伊春市| 宜兰县| 辽阳市| 清新县| 红桥区| 台东县|