人教版七年級下冊數(shù)學(xué) 5.3.2命題、定理、證明 教學(xué)PPT課件
5.3平行線的性質(zhì)5.3.2命題、定理、證明人教版數(shù)學(xué)七年級下冊小明的百米成績有進步,已達到9秒9.有一位田徑教練向領(lǐng)導(dǎo)匯報訓(xùn)練成績;相傳閻錫山在觀看士兵籃球賽雙方爭搶非常激烈.于是命令:“不要再搶啦!每個人發(fā)一個球!”1.理解命題,定理及證明的概念,會區(qū)分命題的題設(shè)和結(jié)論.2.會判斷真假命題,知道證明的意義及必要性,了解反例的作用.素養(yǎng)目標(biāo)3.理解證明要步步有據(jù),培養(yǎng)學(xué)生養(yǎng)成科學(xué)嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度.請同學(xué)讀出下列語句:(1)如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行;(2)兩條平行線被第三條直線所截,同旁內(nèi)角互補;(3)對頂角相等;(4)等式兩邊都加同一個數(shù),結(jié)果仍是等式像這樣判斷一件事情的語句,叫做命題(proposition).2.如果一個句子沒有對某一件事情作出任何判斷那么它就不是命題.如:畫線段AB=CD.1.只要對一件事情作出了判斷不管正確與否都是命題.如:相等的角是對頂角.注意:例1判斷下列四個語句中,哪個是命題,哪個不是命題?并說明理由:(1)對頂角相等嗎?(2)畫一條線段AB=2cm(3)兩條直線平行,同位角相等;(4)相等的兩個角,一定是對頂角.解:(3)(4)是命題,(1)(2)不是命題.理由如下:(1)是問句,故不是命題;(2)是做一件事情,也不是命題.命題的識別1.下列語句在表述形式上,哪些是命題?哪些不是命題?(1)對頂角相等;(2)畫一個角等于已知角;(3)兩直線平行,同位角相等;(4)a、b兩條直線平行嗎?(5)溫柔的李明明;(6)玫瑰花是動物;(7)若a24,求a的值;(8)若a2b2,則ab.否是否否是否是是觀察下列命題,你能發(fā)現(xiàn)這些命題有什么共同的結(jié)構(gòu)特征?與同伴交流.(1)如果兩個三角形的三條邊相等,那么這兩個三角形的周長相等;(2)如果兩個數(shù)的絕對值相等,那么這兩個數(shù)也相等;(3)如果一個數(shù)的平方等于9,那么這個數(shù)是3.都是“如果那么”的形式命題一般都可以寫成“如果那么”的形式.1.“如果”后接的部分是題設(shè)2.“那么”后接的部分是結(jié)論.如命題:熊貓沒有翅膀.改寫為:如果這個動物是熊貓,那么它就沒有翅膀.注意:添加“如果”“那么”后,命題的意義不能改變,改寫的句子要完整,語句要通順,使命題的題設(shè)和結(jié)論更明朗,易于分辨,改寫過程中,要適當(dāng)增加詞語,切不可生搬硬套.命題題設(shè)結(jié)論已知事項由已知事項推出的事項兩直線平行,同位角相等題設(shè)(條件)結(jié)論命題的組成:例2分別把下列命題寫成“如果那么”的形式.(1)兩點確定一條直線;(2)等角的補角相等;(3)內(nèi)錯角相等.解:(1)如果有兩個定點,那么過這兩點有且只有一條直線;(2)如果兩個角分別是兩個等角的補角,那么這兩個角相等;(3)如果兩個角是內(nèi)錯角,那么這兩個角相等.命題表述形式的變換2.請將它們改寫成“如果,那么”的形式.(1)兩條直線被第三條直線所截,同旁內(nèi)角互補;(2)等式兩邊都加同一個數(shù),結(jié)果仍是等式;(3)互為相反數(shù)的兩個數(shù)相加得0;(4)同旁內(nèi)角互補;(5)對頂角相等如果兩條直線被第三條直線所截,那么同旁內(nèi)角互補;如果等式兩邊都加同一個數(shù),那么結(jié)果仍是等式;如果兩個數(shù)互為相反數(shù),那么這兩個數(shù)相加得0;如果兩個角是同旁內(nèi)角,那么這兩個角互補;如果兩個角互為對頂角,那么這兩個角相等有些命題如果題設(shè)成立,那么結(jié)論一定成立;而有些命題題設(shè)成立時,結(jié)論不一定成立.正確的命題叫真命題,錯誤的命題叫假命題.如命題:“如果兩個角互補,那么它們是鄰補角”就是一個錯誤的命題.如命題:“如果一個數(shù)能被4整除,那么它也能被2整除”就是一個正確的命題.確定一個命題真假的方法:利用已有的知識,通過觀察、驗證、推理、舉反例等方法.例3下列命題哪些命題是正確的,哪些命題是錯誤的?(1)兩條直線被第三條直線所截,同旁內(nèi)角互補;(2)等式兩邊都加同一個數(shù),結(jié)果仍是等式;(3)互為相反數(shù)的兩個數(shù)相加得0;(4)同旁內(nèi)角互補;(5)對頂角相等真假命題的識別3.下列句子哪些是命題?是命題的,指出是真命題還是假命題?(1)豬有四只腳;(2)內(nèi)錯角相等;(3)畫一條直線;(4)四邊形是正方形;(5)你的作業(yè)做完了嗎?(6)同位角相等,兩直線平行;(7)同角的補角相等;(8)同垂直于一直線的兩直線平行;(9)過點P畫線段MN的垂線;(10)x2是真命題否是假命題是假命題否是真命題是真命題是真命題否否“因為早上我發(fā)現(xiàn)王五從蘋果園那邊過來,把一袋東西背回家,還發(fā)現(xiàn)我果園的蘋果被人偷了,我知道王五家沒有蘋果樹.所以我家蘋果肯定是王五偷的.”情節(jié)1:一天早上,張老漢來到公安局里告狀說:王五剛剛在他地里偷了一袋子蘋果.文局長立即派干警將王五傳喚到公安局審訊:文局長問張老漢:“你怎知是王五偷了你的蘋果”這種從已知條件出發(fā)(列出理由),推斷出結(jié)論的證明方法,叫綜合法.綜合法是最常用的證明方法.情節(jié)2:文局長一時拿不定主意,就問旁邊的梁副局長:“梁局長,你怎么看?”梁局長說“這事要證明是王五干的,還得弄清那袋子里裝的是不是剛摘的蘋果,還要看看地里的腳印是不是王五的才行.如果袋子里裝的是剛摘的蘋果,且地里的腳印是王五的,那就一定是他偷的。”從結(jié)論出發(fā),逆著尋找所需要的條件的思考過程,叫分析.在分析的過程中,如果發(fā)現(xiàn)所需要的條件,都已具備或可從已知條件中推得.那么證明就很容易了.在很多情況下,一個命題的正確性需要經(jīng)過推理才能作出判斷,這個推理過程叫作證明.注意:證明的每一步推理都要有根據(jù),不能“想當(dāng)然”.這些根據(jù),可以是已知條件,也可以是學(xué)過的定義、基本事實、定理等.證明的概念確定一個命題是假命題的方法:例如,要判定命題“相等的角是對頂角”是假命題,可以舉出如下反例:如圖,OC是AOB的平分線,1=2,但它們不是對頂角.只要舉出一個例子(反例):它符合命題的題設(shè),但不滿足結(jié)論即可.【討論】如何判定一個命題是假命題呢?舉反例分析:要證明AB,CD平行,就需要同位角相等的條件,圖中1與3就是同位角.我們只要找到:能說明它們相等的條件就行了.從圖中,我們可以發(fā)現(xiàn):2與3是對頂角,所以3=2.這樣我們就找到了1與3相等的確切條件了.例4如圖,1=2,試說明直線AB,CD平行.利用證明推理解決問題證明:2與3是對頂角,3=2又1=21=3,ABCD4.如圖所示,直線AB和直線CD,直線BE和直線CF都被直線BC所截,在下面三個式子中,請你選擇其中兩個作為題設(shè),剩下的一個作為結(jié)論,組成一個真命題并寫出對應(yīng)的推理過程ABCD,BECF,12題設(shè)(已知);.結(jié)論(求證):.理由:證明:ABCD,ABCDCB,又BECF.EBCFCB.ABCEBCDCBFCB,12.1.數(shù)學(xué)中有些命題的正確性是人們在長期實踐中總結(jié)出來的,并把它們作為判斷其他命題真假的原始依據(jù),這樣的真命題叫做公理.兩點確定一條直線.兩點間線段最短.經(jīng)過直線外的一點有且僅有一條直線與已知直線平行.直線公理:線段公理:平行線公理:公理的概念2.有些命題是基本事實,還有些命題它們的正確性是經(jīng)過推理證實的,這樣得到的真命題叫做定理.定理也可以作為繼續(xù)推理的依據(jù).同角或等角的補角相等.(2)余角的性質(zhì):同角或等角的余角相等.(4)垂線的性質(zhì):在同一平面內(nèi)過一點有且只有一條直線與已知直線垂直;(1)補角的性質(zhì):(3)對頂角的性質(zhì):對頂角相等.垂線段最短.學(xué)過的定理:定理的概念例5已知:bc,ab求證:ac證明:ab(已知)1=90(垂直的定義)又bc(已知)2=1=90(兩直線平行,同位角相等)ac(垂直的定義).利用公理定理進行推理5.填空已知:如圖,1=2,3=4,求證:EGFH證明:1=2(已知)AEF=1();AEF=2()ABCD()BEF=CFE()3=4(已知)BEF4=CFE3即GEF=HFE()EGFH()對頂角相等等量代換同位角相等,兩直線平行兩直線平行,內(nèi)錯角相等等式性質(zhì)內(nèi)錯角相等,兩直線平行(2019婁底模擬)給出下列說法:(1)兩條直線被第三條直線所截同位角相等(2)平面內(nèi)的一條直線和兩條平行線中的一條相交則它與另一條也相交(3)相等的兩個角是對頂角(4)從直線外一點到這條直線的垂線段叫做這點到直線的距離.其中正確的命題有()A.0個B.1個C.2個D.3個鞏固練習(xí)B1.如圖所示,從12CDAF三個條件中選出兩個作為已知條件,另一個作為結(jié)論所組成的命題中,正確命題的個數(shù)為()A.0B.1C.2D.3D2.下列命題:兩點確定一條直線;兩點之間,線段最短;對頂角相等;內(nèi)錯角相等;其中真命題的個數(shù)是()A.1個B.2個C.3個D.4個C3.下列選項中,可以用來說明命題“兩個銳角的和是銳角”是假命題的反例的是()A.A30,B40B.A30,B110C.A30,B70D.A30,B90C4.下列命題是真命題的是()A.相等的角是對頂角B.如果一個數(shù)能被3整除,那么它也能被6整除C.同旁內(nèi)角互補D.同位角相等,兩直線平行D5.如圖所示,已知AC與BD相交于點O,OE是AOD的平分線,可以作為假命題“相等的角是對頂角”的反例的是()A.AOBDOCB.EOCDOCC.EOBEOCD.EOCDOCC6.在下面的括號內(nèi),填上推理的依據(jù).如圖,ABCDCBDE求證:B+D=180證明:ABCDB=C()CBDEC+D=180()B+D=180()等量代換兩直線平行,內(nèi)錯角相等兩直線平行,同旁內(nèi)角互補(1)如圖所示,若12,則ABCD,試判斷該命題的真假:(填“真”或“假”).(2)若上述命題為真命題,請說明理由,若上述命題為假命題,請你再添加一條件,使該命題成為真命題,并說明理由.假解:加條件:BEFD.理由如下:BEFD,EBDFDN(兩直線平行,同位角相等).又12,ABDCDN.ABCD(同位角相等,兩直線平行).證明:ABCD(已知),BPQCQP(兩直線平行內(nèi)錯角相等)又PG平分BPQ,QH平分CQP(已知),GPQBPQHQPCQP(角平分線的定義),GPQHQP(等量代換),PGHQ(內(nèi)錯角相等,兩直線平行)如圖,已知ABCD,直線AB,CD被直線MN所截,交點分別為P,Q,PG平分BPQ,QH平分CQP,求證:PGHQ.真命題假命題公理定理(只需舉一個反例)(不需證明)(由推理證實)1.命題的定義:2.命題的組成:3.命題的分類:判斷一件事情的句子題設(shè)和結(jié)論課后作業(yè)作業(yè)內(nèi)容教材作業(yè)從課后習(xí)題中選取自主安排配套練習(xí)冊練習(xí)